Bala Subramaniam

School of Engineering - Chemical & Petroleum Engineering
Dan F. Servey Distinguished Professor
Primary office:
Learned Hall
Room 4156
University of Kansas
1530 West 15th Street
Lawrence, KS 66045
Second office:
Wakarusa Research Facility
Room A110

Bala Subramaniam is the Dan F. Servey Distinguished Professor of Chemical Engineering at the University of Kansas (KU). Subramaniam earned a B.Tech. in Chemical Engineering from the A. C. College of Technology, Chennai, India and his Ph. D. in Chemical Engineering from the University of Notre Dame. He has also held visiting professorships at the University of Nottingham, United Kingdom and Institute of Process Engineering, ETH, Zürich, Switzerland.

Subramaniam’s research interests are in catalysis, reaction engineering and crystallization. In particular, his research harnesses the pressure-tunable physicochemical properties of unconventional solvents such as supercritical fluids and gas-expanded liquids in multiphase catalysis to develop resource-efficient technologies with reduced environmental footprint. He has authored 160+ refereed research publications and 27 issued patents, edited 2 books, presented invited seminars at nearly 100 academic institutions and companies, and given keynote/plenary lectures at nearly 50 conferences.

Subramaniam is the Director of the Center for Environmentally Beneficial Catalysis (CEBC), initiated as a National Science Foundation Engineering Research Center (NSF-ERC), and now a successful center known for its unique industry collaboration model and multi-scale approach to delivering innovations. In partnership with member companies (including ADM, BASF Catalysts, BP, ConocoPhillips, Chevron Phillips, DuPont, Eastman Chemicals, Evonik, ExxonMobil, Invista, Procter&Gamble, Reliance Industries, SABIC, Solvay and UOP), the CEBC is developing and providing licensing opportunities for novel sustainable technologies related to fuels and chemicals. Subramaniam is also a co-founder of CritiTech, Inc., a pharmaceutical company with a mission to commercialize the production of fine-particle compounds based on his group’s inventions.

Subramaniam is the associate editor of ACS Sustainable Chemistry and Engineering and chair-elect of the 2018 Gordon Research Conference on Green Chemistry. He serves on the editorial boards of Industrial and Engineering Chemistry Research, Applied Catalysis B: Environmental, Canadian Journal of Chemical Engineering and Chemical Engineering Technology. He has also been on the scientific and organizing committees of several international symposia in catalysis and reaction engineering, co-chairing the Eighteenth International Symposium on Chemical Reaction Engineering (ISCRE-18, Chicago, 2004) and the Joint India-U.S. Chemical Engineering Conference on Energy and Sustainability (Mumbai, 2013). He has also served as the President of ISCRE, Inc., and serves on the Board of Directors of the Organic Chemical Reactions Society (ORCS).

Subramaniam has received several awards for teaching and research, including the Dow Outstanding Young Faculty Award from the American Society for Engineering Education (ASEE); a Silver Anniversary Teaching Award and H.O.P.E. (Honor for the Outstanding Progressive Educator) award finalist recognitions from KU; the Henry Gould Award for Teaching and a Sharp Teaching Professorship from the KU School of Engineering; Higuchi Research Achievement Award, the highest recognition for research given by KU; a “Distinguished Catalyst Researcher” lectureship from the Pacific Northwest National Laboratory; and a “Chemcon Distinguished Lectureship Award” from the Indian Institute of Chemical Engineers. Subramaniam is a Fellow of the AIChE, the ACS Industrial & Engineering Chemistry Division, and the National Academy of Inventors.


Ph.D., Chemical Engineering, University of Notre Dame

M.S., Chemical Engineering, University of Notre Dame

B. Tech., Chemical Engineering, A. C. College of Technology, University of Madras


Creative solutions to engineering problems require a sound complement of fundamental knowledge, intuition, imagination and critical thinking. I believe that a teacher has a vital role and challenge in fostering these attributes in students. My teaching methods are aimed at achieving this goal. In the theory courses, I show how engineering equations are essentially 'math-based languages' or models that aid our understanding of physical and chemical processes. I constantly encourage students to assess if the process behavior predicted by the model makes intuitive sense. Given that commercial software is invariably used for equation-solving and design purposes, it is especially essential to develop such an understanding and intuitive feel for interpreting results from computer simulations. I provide examples of how theories and equations have been used to develop engineering solutions in everyday life. In addition to traditional homework assignments that emphasize fundamentals and solution procedures, I assign two to three open-ended projects that are comprehensive in nature. These projects address industrially important problems and require students to integrate fundamental knowledge, intuition and imagination in critically analyzing and designing sustainable engineering processes that are resource-efficient (i.e., conserve feedstock and energy). I emphasize how resource-efficient technologies not only make good business sense but also are inherently green.

I believe that the laboratory courses provide a vital forum for not only reinforcing theoretical concepts but also developing essential experimental, data analysis, troubleshooting, team work and communication skills. The analysis/interpretation of experimental data form the basis for the preparation of various types of written reports (journal-type, memos, etc.) and oral presentations. Prior to each laboratory session, I require student teams to make concise presentations about their planned work and to rigorously defend their work plan. Besides providing training in oral and written communication skills, this process also helps students to solidify their understanding of theory.

Clear statement of course goals and expectations, effective lectures and notes, challenging yet fair assignments and tests, and accessibility to students are all essential to a positive learning experience -- one that motivates students' desire to learn and to excel. My teaching methods continue to evolve as I have learned more about teaching tips and techniques from student/peer feedback and from periodicals such as the Teaching Professor and Chemical Engineering Education, especially those that use modern technology-based classrooms to deliver instruction in novel ways.

My major teaching interests are in the areas of chemical engineering kinetics, reactor design, industrial development of sustainable catalytic processes, transport phenomena, mathematical methods in chemical engineering, and supercritical fluid technology.

Teaching Interests

  • Chemical engineering kinetics and reactor design
  • Mass transfer
  • Mathematical methods in chemical engineering
  • Industrial development of sustainable catalytic processes
  • Chemical engineering unit operations laboratories
  • Undergraduate and graduate courses.


The modern day ‘petrochemical’ refinery relies primarily on fossil-based feedstock (such as petroleum, natural gas and coal) to produce the essential chemical intermediates for everyday products (medicines, packaging materials, synthetic fibers, detergents, coolants, etc.). To meet the sharply increasing global demand for such products, alternate feedstocks such as plant-based biomass and shale gas are also being considered to make these chemical intermediates. These alternate sources, however, require the development of new technologies. Our research is focused on developing resource-efficient technologies, which conserve feedstock and energy, for both conventional and emerging sources. We address this challenge by discovering catalysts that selectively transform the feedstock to desired products minimizing waste, using tunable solvents that provide both reaction benefits and environmental benefits such as reduced toxicity and carbon footprints, and developing novel reactors that are energy-efficient in converting raw materials to products. Working in collaboration with several industry partners of the Center for Environmentally Beneficial Catalysis (CEBC), we have demonstrated such novel alternative technologies for many important chemical intermediates. In addition to economic assessment, we also perform cradle-to-grave life cycle analysis (LCA) of the new technologies to assess environmental performance and sustainability. One such technology for making ethylene oxide (a plastic precursor) received a prestigious award from the American Chemical Society. Archer Daniels Midland (ADM), a global leader in agricultural processing, recently opened research operations in Lawrence, KS to work closely with University of Kansas CEBC researchers to develop technologies that convert ADM’s myriad plant-based feedstocks to value-added products. Such collaborations have been augmented by funding from federal agencies (US Department of Agriculture, National Science Foundation and Environmental Protection Agency) to the tune of nearly $17 million since 2011. The development of such technologies has significant economic implications for the State of Kansas given its unique mix of natural resources that include not only plant-based biomass but also natural gas, crude oil and wind energy potential. A manufacturing sector built around these resources can be thriving and make Kansas among the global leaders in the manufacture and export of “renewable chemicals”.

More details of the research program and a list of selected publications may be found in the "Research Interests" section of this website.

Research Interests

  • Catalysis and reaction engineering for resource-efficient chemicals/fuels production from conventional and biomass feedstocks
  • Exploiting supercritical and gas-expanded liquids in crystallization and benign chemicals/fuels processing


I have been active in service activities at both the University of Kansas and the professional societies [American Institute of Chemical Engineers (AIChE) and the American Chemical Society (ACS)]. I especially like roles where I am able to contribute to transformational changes that have long-term beneficial impacts on the institutions I serve.

I have served as graduate advisor of the chemical and petroleum engineering (C&PE) department to streamline graduate advising, curricular and graduate recruitment activities. Later on, I served as department chair when the C&PE faculty implemented a five-year strategic plan with positive outcomes including the creation of a NSF engineering research center [the Center for Environmentally Beneficial Catalysis, CEBC], increased external research funding, the addition of five new faculty lines for interdisciplinary initiatives in the areas of catalysis and bioengineering, and the successful mentoring and nominations of several faculty for teaching and research awards.

As CEBC director, a unique industry partnership program was implemented. In partnership with member companies (that have included ADM, BASF Catalysts, BP, ConocoPhillips, Chevron Phillips, DuPont, Eastman Chemicals, Evonik, ExxonMobil, Invista, Procter&Gamble, Novozymes, Reliance Industries, SABIC, SI Group, and UOP), the CEBC is developing and providing licensing opportunities for novel sustainable technologies related to fuels and chemicals.

Since its inception, the CEBC has launched several multidisciplinary research initiatives dealing with sustainable catalysis for producing fuels and chemicals with funding from federal, state and industry sources. The total funding from these sources exceeds $35 million since 2003. These successes have resulted in the addition of several faculty members in the chemistry and C&PE departments. I chaired the recruitment of several of the current C&PE faculty members in the areas of catalysis, reactor engineering and materials science. I serve as mentor to several of the young faculty members recruited as part of these initiatives.

For nearly two decades, I have been active in external professional service focused on facilitating sustainable practices in the chemical process industries, including the use of biomass as a renewable feedstock to produce chemicals and fuels. I have served on several national and regional technical panels including the NSF/EPA panels on environmentally benign processing, and the Midwest Biomass Research & Development Initiative Roadmap panel. I served as the President of the International Symposia for Chemical Reaction Engineering (ISCRE, Inc.) during 2011-2012, and currently serve on the Board of Directors of the Organic Reactions Catalysis Society (ORCS). I have served on the scientific and organizing committees of several international symposia in catalysis and reaction engineering, co-chairing the 18th International Symposium on Chemical Reaction Engineering (ISCRE-18, Chicago, 2004), the 2nd North American Symposium on Chemical Reaction Engineering (NASCRE-2, Houston, 2007) and the 2nd and 3rd Joint India-U.S. Chemical Engineering Conference on Energy and Sustainability (Chandigarh, 2008; Mumbai, 2013).

I currently serve as Associate Editor of ACS Sustainable Chemistry and Engineering, a new ACS journal launched to archive research advances in sustainability-related research in the chemistry and chemical engineering disciplines. I also serve on the editorial boards of Industrial and Engineering Chemistry Research (past), Applied Catalysis B, Canadian Journal of Chemical Engineering, and Chemical Engineering Technology.

One of 34 U.S. public institutions in the prestigious Association of American Universities
Nearly $290 million in financial aid annually
44 nationally ranked graduate programs.
—U.S. News & World Report
Top 50 nationwide for size of library collection.
23rd nationwide for service to veterans —"Best for Vets," Military Times
KU Today